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Automateddetectionofcomplexzebrafish
seizure behavior at scale
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Convulsive seizure behaviors are a hallmark feature of epilepsy, but automated detection of these
events in freely moving animals is difficult. Here, we employed a high-resolution multi-camera array
microscope with high-speed video acquisition and custom supervised machine learning (ML) for
automated detection of larval zebrafish between 3- and 7-days post-fertilization (dpf). We assessed
data from over 2700 zebrafish either exposed to a chemoconvulsant (pentylenetetrazole, PTZ) or
genetic zebrafish lines representing Developmental Epileptic Encephalopathy (DEE) syndromes.
Using eight-point skeletal body pose estimation for tracking individual larvae arrayed in a 96-well
format, we report reliable, quantitative and age-dependent changes in maximum swim speed, as well
as eye-, head- and tail- angle kinematics. Finally, we employed an ML-based algorithm to
automatically identify normal and abnormal behaviors in an unbiased manner. Our results offer a
robust framework for automated detection of zebrafish seizure-associated behaviors.

Seizures manifest as stereotypical behaviors including muscle spasms,
sustained rhythmic jerking, focal stiffening and behavioral arrest1.
Accurate identification of these movements is critical for understanding
seizure generation and developing new therapeutics2–5. This under-
standing necessitates use of experimental animal models of seizures and
epilepsy6–8. These range from spontaneous models of epilepsy (dogs,
baboons and domoic-acid poisoned California sea lions)9,10 to acquired
and acute experimental models (cats, rabbits, monkeys and rodents)7,11–13.
Of these varied species options, rodents emerged as the most widely used
animal model in the epilepsy field14–16. A long-established standard for
evaluation of rodent seizure behavior is a semi-quantitative observational
scale developed by Racine in 1972 using an amygdala-kindling model17.
In rodents, seizure behaviors include whisker twitching, stiffened tail,
rearing and forelimb clonus. However, unbiased analysis of such beha-
viors can be challenging, especially as seizures in unrestrained animals
consist of elaborate and variable movements organized at multiple
timescales. Automating this observation-based system and scaling to
automatically monitor hundreds of experimental animals simultaneously
also presents a daunting challenge. Although recent technical advances
are beginning to address these issues in rodents, including adaptation of
deep-learning-based platforms (such as MoSeq)2 that incorporate
3-dimensional cameras and unsupervised machine learning4, scalability
with rodents remains limited.

Seizure behavior and antiseizure medication (ASM) discoveries his-
torically employ animal models using chemical convulsant agents15 such as
PTZ, a GABAA receptor antagonist, first described in the 1950s18,19. This
model is simple and reliably elicits acute seizures in mice, cats, rabbits,
gerbils, monkeys and rats20. PTZ is water-soluble, facilitating adaptation of
this model to larval zebrafish (Danio rerio)21–32 where drugs dissolved in
bathingmedium are rapidly absorbed directly through the skin33. As a small
vertebrate, zebrafish offer significant advantages of scale over other
experimental animal seizure models34 and are amenable to large-scale drug
screening35–38. Their translational value is further enhanced by multifaceted
parallels tohumans at genetic, cellular, andbehavioral levels. Zebrafish share
a conserved neuroarchitecture, including forebrain (telencephalon), mid-
brain (mesencephalon) and hindbrain (rhombencephalon) regions that are
functionally analogous to those in mammals39–43. From a functional per-
spective, specific cell types necessary for generation of network activity are
present from 2 days post-fertilization (dpf) and include excitatory
glutamatergic44, inhibitory GABAergic41,44, monoaminergic (dopamine,
noradrenaline, serotonin, histamine) neurons41,45 and non-neuronal
(astrocytes, microglia) cells46,47. Larval zebrafish can exhibit electrographic
seizure activity with similarities to human ictal events, including high-
amplitude, synchronized spike discharges, and seizure-like rhythmic local
field potential (LFP) patterns21,22,48. Their amenability to genetic manip-
ulation enables real-time functional validation of epilepsy-associated genes
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identified in patients49,50, thus facilitating genotype-phenotype studies in a
living vertebrate system. Further, zebrafish-based drug discovery led to the
identification of candidate therapies, such as clemizole, lorcaserin and
fenfluramine37,38,51,52, which progressed to clinical trials for DEE patients.
Recent advances in high-resolution imaging and machine learning have
further enhanced the utility of this model. For example, studies of normal
larval swim behavior53,54 highlight the potential to quantify complex motor
and non-motor manifestations relevant to seizure phenotyping.

Analysis of behavior is a critical functional readout of brain activity.
Here we describe a robust, unbiased and high-throughput approach to
automatically monitor complex behavior in larval zebrafish. PTZ, a tradi-
tional chemoconvulsant, was used to elicit seizures in zebrafish during early
development (3- to 7- dpf). Using a multi-camera array microscope
(MCAM) that tethers 24 high-resolution cameras to capture an entire 96-
well plate at 312 megapixel (MP) resolution55,56, we acquired imaging data
on freely moving larval zebrafish at 160 frames per second (fps). With
sufficient spatial resolution to discern individual larval posture, this
approach enabled precise measurement of head, eye and tail location.
Abnormal high-speed convulsive behaviors were identified at maximum
swim speeds of 120mm/sec in a single well. Significant age-dependent,
seizure-associated changes in eye, head and tail angle kinematics (not fully
appreciated using single-camera low-resolution systems) are described.
Additionally, we developed an automated ML-based behavioral classifica-
tion algorithm to detect and assess the diverse and dynamic seizure-like
activities of larval zebrafish at scale. Although the complexity and variability
of seizure-like behaviors in zebrafish larvae pose unique challenges for
behavioral analysis, we successfully generalized our model to genetic zeb-
rafish models representing DEEs. Total activity analyses revealed increased
swim movement in both pnpo and scn1lab mutants, and our algorithm
reliably identified and distinguished seizure-like behavioral motifs
(including rapid darting, whirlpool, and clonus-like tail beats specific to
scn1lab larvae). Adapting these technologies to analyze clinically relevant
seizure behaviors could significantly improve ASM evaluation by enabling
more accurate, scalable behavioral screening and accelerate drug discovery.

Results
High-resolution high-speed video acquisition facilitates
automated detection of quantifiable seizure behaviors
Larval zebrafish seizures were initially described as a simple repertoire of
swim movements culminating in full-body convulsions22. These behaviors
were tracked using a single low-resolution camera and a single-point
detection system at an acquisition speed of 25 fps (Supplementary Fig. 1A,
left). From these observations, a semi-quantitative scale capturing three
stages of behavior extending fromamodest increase in swimbehavior (stage
1), to rapid whirlpool-like movements along the well perimeter (stage 2) to
convulsive movements followed by a brief loss of posture (stage 3) was
established22. However, this qualitative scale naturally incorporates some
investigator-bias and previous first-generation video acquisition tools do
not offer adequate resolution of high-speed and fine motor movements
across the entire 96-well plate. Here, we used a multi-camera array micro-
scope with 24 high-resolution cameras to record freely swimming larvae at
160 fps (Supplementary Fig. 1a, right) coupledwith pose estimation of eight
key-points per larva (Supplementary Fig. 1b; Supplementary Video 1).
Accuracy evaluation of the pose estimation model suggested inferred
coordinate errors ranging from 55 to 130 microns depending on the key-
point coordinate (Supplementary Fig. 2). First, we established a detectable
movement rate of 120mm/sec as a cutoff for swim speeds reached by an
individual larva in a single 0.32 cm2 well by first plotting speeds of 1632
larvae recorded on a log scale across 48,000 frames (Supplementary Fig. 1c).
Second, to determine tracking noise for x and y components of all estimated
key-points, mean sigma was plotted for each (Supplementary Fig. 1d).
Third, to achieve higher levels of tracking data output accuracy these sigma
values were used as an input in a wavelet denoising algorithm, along with
center-of-mass (COM) and speed threshold filtering (Supplementary
Fig. 1e). Representative tracking plots show where individual larvae travel

within awell and encode speed thresholds via color. Larvaemoving between
0 and 50mm/s are presented along a gradient of blue-to-red with larvae
moving faster than 50mm/s shown in green (Supplementary Fig. 1e).

As zebrafish larvae are rapidly maturing in the first week post-
fertilization57,58, we first identified the range of behavioral seizure activity
possible at 3, 5 and 7 dpf (Fig. 1a) e.g., commonly used developmental stages
inmost zebrafish neuroscience studies. At baseline, spontaneous swimming
is sporadic and larvae primarily swim at speeds lower than 50mm/s
(Fig. 1b, c, baseline)59,60. Although infrequent, brief high-speed darting
movements are possible. At the first time point, 5 min after exposure to
15mM PTZ, zebrafish larval swim movement increases dramatically to
cover the entire well arena at speeds much greater than 50mm/s (Fig. 1b, c,
TP1). To quantify zebrafish movement within each well, we calculated an
activity score (summation of movement over recording duration based on
change in pixels from frame-to-frame presented on a log scale) (Supple-
mentary Fig. 3). Plotting instantaneous activity across time for a single
representative larva during each recording epoch highlights how the peak
activity metric increases nearly 3-fold from baseline with PTZ (Fig. 1c).
These plots also show that activity during the first PTZ timepoint1 (TP1) is
characterized by a “bursting”patternnot seen at baseline that becomesmore
frequent with continued PTZ exposure (TP2). Zebrafish larvae at all three
ages exhibit a significant increase in total activity from baseline with PTZ
(Wilcoxon test: p < 1E–15 for each population at TP1 and TP2) (Fig. 2a).
Likely owing to increased episodes of seizure related posture loss with
continuous PTZ exposure, larvae at 5 or 7 dpf demonstrate a slight decrease
in total activity from TP1 to TP2 (5 dpf, p < 1E–15; 7dpf, p = 7.9E–5).
Consistent with total activity metric scores increasing with PTZ, larvae also
display significant increases in total distance traveled (m) at 3, 5 and 7 dpf
(Wilcoxon test: p < 1E–15 for each population at TP1 and TP2) (Fig. 2b).

Single-camera, single-point detection systems using an algorithm for
locating objects darker than background most commonly report total dis-
tance traveled as the primary metric for identifying seizure-associated
behavior61–63. Because convulsive seizures are invariably associated with
high-speed swimmovements, we previously described a customMATLAB
script for single-point detection systems to detect seizure-associated swim
activity at speeds greater than 28mm/s49. However, given the 25-fps lim-
itation and low-resolution camera usedon these systems, this thresholdmay
underestimate swim velocities reached during a convulsive seizure in a
0.32 cm2well.With video acquisition at 160 fps and camera resolution up to
312 MP we here observed baseline larval swim events that can exceed
50mm/s (Fig. 3a). However, these speeds are rare at baseline and reached
only in brief episodes. In stark contrast, PTZ was invariably associated with
sustainedhigh-speed convulsive-associated behavior that consistently reach
speeds of 110–120mm/s in freely swimming larvae at 3, 5 and 7 dpf at both
TP1 and TP2 (Fig. 3a). Probability density plots show maximum speeds
reached for all 3, 5 and 7 dpf larvae, confirming that PTZ exposure increases
maximum swim speeds from baseline to TP1 and TP2. These plots also
reveal a slight decrease in maximum swim speeds during TP2 compared to
TP1, suggestive of lesswhirlpooling (stage 2 behaviors) andmore convulsive
activities (stage 3 behaviors) (Fig. 3b).

Advancedswimkinematicmeasurements reveal awider rangeof
seizure behaviors
Understanding zebrafish swim kinematics contributes to our overall
understanding of how the brain controls movement59,64. Because epileptic
seizures are defined by a repertoire of complex behaviors1,4, uncovering
novel swim kinematics in seizing larval zebrafish will contribute to our
understanding of epilepsy. Here we used pose estimation algorithms with
8-points aligned along the zebrafish larvae skeleton, for unbiased quantifi-
cation of freely swimming larval behavior during PTZ exposure. Focusing
on the interaction of select key-points, we first analyzed how seizures are
associatedwith significant changes in tail and heading angles. Points located
on the snout and center of the body were used to create heading and body
axis vectors, and the center and caudal finpoints create a tail vector (Fig. 4a).
The tail vector was used to calculate changes in tail angles with respect to
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body axis vector as zebrafish larvae display a wide range of tail angles from
0°, when larvae are in a normal fully extended position, to 180°, when larvae
are curled, and the tail tip touches the snout (Fig. 4b).Heading angle changes
were calculated by measuring angle difference of the heading vector on a
frame-to-frame basis according to position of an individual larva in the well
(Fig. 4c). Quantitative assessment of head (Fig. 4d) and tail (Fig. 4e) angle
changes in larvae at 3, 5 and 7 dpf revealed greater alterations in these
kinematic measures during PTZ compared to baseline. The most pro-
nounced changes were observed in larvae at later developmental stages.

In late stages of seizure-associated behavioral progression (e.g., stage 3),
larvae exhibit sinusoidal full-body convulsions followed by periods of
posture loss22. To automatically detect these movements, we used two key-
points positioned on the eyes to calculate inter-eye distance, serving as a
proxy for posture loss (Fig. 5a, b). When larvae are stationary or swimming
upright, both eyes are visible, with an inter-eye distance of approximately
200 μm.This distancedecreases to approximately 0 μmwhenonlyone eye is
visible i.e., a larva with post-seizure posture loss. At 3 dpf, posture loss as
measured by inter-eye distance is modestly decreased with PTZ from
baseline (Fig. 5c) (Wilcoxon test: p < 0.003). However, these PTZ induced
reductions in inter-eye distance becomemore significant with development
at 5 and 7 dpf (Fig. 5c) (Wilcoxon test: p < 1E–15 for each population at TP1
and TP2). Representative plots of inter-eye distance over time for the entire
5-min recording is shown for baseline and PTZ timepoint 2 in Fig. 6a. Note
the small fluctuations in inter-eye position at baseline when larva is largely
stationary or in a normal burst and glide swimmode (Fig. 6a, top trace). In
contrast, during full-body convulsions in PTZ we observed abrupt changes
in inter-eye distance as larvae exhibit erratic twists and turns within the well
(Fig. 6a, bottom trace). Here, we performed parallel experiments combining

local field potential recording (LFP) of electrical activity with fast fiber
photometry to monitor brain Ca2+ dynamics using a genetically encoded
calcium indicator under a pan-neuronal promoter (Tg(HUC:H2B-
GCaMP6s). This approach enabled us to capture hypersynchronous neural
activity and highlight the temporal similarities with the motor manifesta-
tionsof this activity exhibitedduring changes in inter-eyedistances (Fig. 6b).
As the opticfiber is placedoutside the larvae and reportsCa2+dynamics only
for GCaMP-expressing neurons as a proxy for neural activity, it provides a
sensitive non-invasive measure of brain-specific activity free of movement
artifact. To capture Ca2+ signals, larvae were positioned dorsal side up in
agarose and the optic fiber (100 µm core, 0.22 NA) was placed above
forebrain near anterior optic tectum. To simultaneously monitor electrical
activity, amicroelectrodewas inserted into optic tectum. Like baseline inter-
eye distance plots in panel 6b (top), baseline LFP+ photometry data
showed little to no electrical or Ca2+ activity.However, resembling the inter-
eye PTZ trace in panel 6b, we observed large abrupt Ca2+ signal fluctuations
synchronized with voltage deflections in LFP typical of ictal-like seizure
events followed by a post-ictal electrical signal depression (Fig. 6c, LFP
trace); Ca2+ sensors decay more slowly but accurately capture these seizure
event onsets (Fig. 6c, Delta F/F trace).

Evaluation of a common antiseizure medication, valproate
Seizing zebrafish larvae facilitate high-throughput drug screening at a scale
not possible using rodent models65–68. Here, we determined whether mea-
surements described above could be used to identify an ASM (valproate,
VPA), widely used in clinical practice69,70. First, we used our functional LFP
plus fiber photometry assay to confirm VPA acts to suppress PTZ seizure
activity at the level of the central nervous system (CNS). As expected21–23,

Fig. 1 | PTZ seizures. a Schematic for MCAM acquisition protocol; videos acquired
at 160 fps in 5 min epochs. 20 min continuous PTZ exposure with two video
acquisitions at timepoint 1 (TP1) and timepoint 2 (TP2). b Sample tracking plots
across 12wells of representative larvae at Baseline (blue), PTZTP1 (yellow) and PTZ

TP2 (orange). Tracking plots are color coded to indicate speed from blue (slow) to
red (faster) to green (>50 mm/s). Supplementary Fig. 3 shows activity metric values
corresponding to thewells shown (b). cRepresentative activitymetrics plotted over a
5 min recording for a single larva at baseline, PTZ TP1 and PTZ TP2.
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PTZ-induced seizure-like electrographic and Ca2+ events were suppressed
following VPA exposure in agarose-immobilized larvae (Fig. 7a). Next, to
determine whether video acquisition using MCAM, could be used to
identify an ASM, we tested larvae randomly plated in a 96-well array. As
anticipated, VPA decreased swim movement (Fig. 7b), and significantly
reduced average total activity (Fig. 7c, left) and average total distance tra-
veled (Fig. 7c, right) (Wilcoxon test: p < 1E–15 for eachmetric). These results
validate a strategy for future drug screening using the MCAM system.

ML-driven ethograms for unbiased detection of seizure
behaviors
Machine learning driven analysis of rodent behaviors are beginning to
discover previously hidden phenotypes in freely behaving animals2,71.
Gschwind et al.4 recently adapted an ML-assisted analysis to mouse
models of epilepsy. However, this approach was limited to a single seizing
rodent and does not scale easily. Here, we developed ML algorithms (see
Methods) tailored to individual zebrafish behavior in a 96-well plate
format. Briefly, video frames were segmented to 60-frame windows,
equivalent to 0.375 s of acquisition (Fig. 8a). The first frame of each
window underwent egocentric alignment through a series of transfor-
mations and translations, which were then applied to the successive 59
frames. Over 400 extracted video clips were labeled for five different
behavioral classifications: (i) stationary (no movement), normal swim
(brief burst and glide forward movement), whirlpool (rapid swimming
along the well edge), convulsion (fast sinusoidal whole-body movements
with large right-left tail bends or corkscrew vertical swimming) and
posture loss (larvae on side); see Supplementary Videos 2–6. These
behaviors were used to train a random forest classification (RFC) model
(Fig. 8b). We also evaluated k-nearest neighbors and support vector

classifier algorithms (Supplementary Fig. 4a–c); however, the optimized
RFC model best classified these behaviors, achieving a F1 score of 0.872
and an average classification accuracy of 0.874 (Supplementary
Fig. 4d, e). Next, we used this model to automatically classify behaviors
occurring in each recording epoch across the entire 5 dpf 576 larvae
dataset. Results were first visualized as pie charts for each 96-well plate,
with one chart per well representing the percentage of each classified
behavior during the recording period for each larva (Fig. 8c). Our ML-
based analysis of high-resolution video acquisitions from 5min record-
ing epochs during PTZ exposure revealed robust increases in traditional
seizure-like behaviors previously scored as Stage 2 or 3 activity (e.g.,
whirlpool, convulsion and posture loss)22. Swim activity seen during
baseline recordings in embryo media primarily consist of ‘stationary’ and
‘normal’ burst and glide behaviors. Next, ethograms were used to plot the
occurrence of each of these five behaviors over time, aligned with plots
for scalar metrics of displacement (m), inter-eye distance (mm), heading
and tail angle changes (deg) over time (Fig. 8d). Representative etho-
grams for baseline, TP1 and TP2 highlight the increased occurrence of
whirlpooling, convulsions and posture loss with PTZ. Alongside
observed differences between baseline and PTZ with respect to frequency
of seizure-like behaviors over time, ML automatically identified seizure
episodes which are characterized by a sequential progression from sta-
tionary (dark blue) to normal swim (light blue), to whirlpool swimming
(orange), to convulsive behavior (red) culminating in posture loss
(purple). Finally, representative 75 s segments for the seizure-like beha-
viors at TP2 further illustrate how ML identified metrics in the ethogram
correspond to scalar metrics (Fig. 8e). Each of these behavioral metrics
depicts a temporal pattern of activity resembling that seen with mon-
itoring of brain activity patterns (compare Figs. 6c and 8e).

Fig. 2 | Increased swimmovement with PTZ. a Total activity (AU) shown in log10
scale for each larva recorded at baseline (blue), PTZ TP1 (yellow) and PTZ TP2
(orange) at 3 (left,N = 473), 5 (center,N = 547) and 7 (right, N = 546). Mean shown

as straight line. Wilcoxon signed rank ***p < 0.0005, ****p < 0.0001. b Total dis-
tance traveled (m) during each recorded epoch for each larva. Mean shown as
straight line.
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Automated detection of seizure behavior in genetic epilepsy
zebrafish models
Next, we examined spontaneous swim behavior using MCAM with six
different zebrafishmodels representing a spectrum of DEEs associated with
single-genemutations. Stable zebrafish lines representingGABR3,PCDH19,
PNPO, SCN1A, SCN8A and SYNGAP1B were generated using CRISPR-
Cas9 editing37,49 and raised to F10 generation or later. LFP recordings have
reported spontaneous ictal-like electrographic seizure events in scn1lab and
pnpo zebrafish mutants49,72–74. Adult heterozygote breeders were crossed to
generate clutches ofwild type, heterozygote andhomozygotemutantswhich
were then randomly selected at 5 dpf and placed individually in a 96-well
plate. To quantify zebrafish movement within each well, we calculated an
activity score andall larvaewere genotypedpost hoc.A significant increase in
total activity was noted for homozygote pnpo−/− and scn1lab−/− larvae
compared to WT sibling controls (Fig. 9a) (unpaired t-test: p < 1E–15 for
each population). Next, we used our trained RFC model for automatic
behavior classification of scn1lab mutants. A representative ethogram
highlights increased occurrence of behavior classified as whirlpooling,
convulsion and posture loss (Fig. 9b); segments for these seizure-like
behaviors illustrate howML identifiedmetrics in the ethogram correspond
to scalar metrics. A sequential progression from stationary (dark blue) to
normal swim (light blue), to whirlpool swimming (orange), to convulsive
behavior (red) culminating in posture loss (purple) can be seen in some
portions of the scn1lab ethogram, like that observed for acute PTZ-induced
seizures (compare Figs. 8d and 9b).

Discussion
Deciphering complex behaviors offers a window into our understanding of
the brain. Recent advancements in adaptingmachine learning to analysis of
behavior in experimental animal models is beginning to offer new insights
into social behavior75, cerebellar contributions to coordinated locomotion76,
sex-specific behavior77 and naturalistic self-motivated behavior78. Applied
here, for the first time, to a widely used acute seizure zebrafish
model21–23,25,29,79–82, as well as genetically modified epilepsy models, we pro-
vide a framework to further our understanding of epilepsy (e.g., a neuro-
logical disorder marked by recurrent spontaneous seizure behaviors) and
aid in future high-throughput drug screening efforts. Our studies revealed
sensitive and unique kinematicmeasurements (head and tail angle changes,
inter-eye distance and overall activity) derived from a combination of high-
resolution imaging, fast video acquisition, and unbiased ML algorithms.
Together these measurements enabled automated detection of complex
seizure-like behaviors in larval zebrafish at scale.

Behavioralmanifestations of seizures are a hallmark feature of epilepsy
patients as well as experimental animal models. Largely described in a vast
literature on this topic based upon human observation, we are now begin-
ning to see the first applications of unbiased ML-based approaches to
automatically detect and define these complex CNS-generated behaviors4.
This approach utilizes pose estimation as a computational method for
measuring geometrical body configurations. Thismethodology is enhanced
by deepneural networks that allow formore precise,marker-less tracking of
skeletal or contour models in experimental animals83,84. While existing pose
estimation tools like DeepPoseKit85, ZebraZoom86 and DeepLabCut87 are
effective for naturalistic behavior tracking, application to neurological dis-
orders, particularly for seizure detection in larval zebrafish only several
millimeters in length, is lacking. Here, we developedML-basedmethods for
monitoring complex larval behaviors, with a particular example shown here
for epileptic seizures. High-speed acquisition and image resolution afforded
by themulti-array cameramicroscope55 facilitated robust pose estimation in
freely swimming larval zebrafish arrayed individually in a 96-well plate that
would not be possible on a single-camera low-resolution acquisition system
or fluorescent plate reader88. Single-camera systems21,24,51,72,82 utilize simple
measurements like total distance moved to capture gross larval seizure
behaviors. This approach was confirmed and extended here. Interestingly,
capturing video data at 160 fps revealed convulsive seizure behaviors
reaching much faster swim speeds than previously recognized at 25 fps
acquisition24,49. The high-resolution image acquisition possible also allowed
for precise detection of the large (up to 180°) tail curling episodes associated
with these convulsive-like behaviors as well as the rapid changes in head
angle. Further, selecting key-points along a larval skeleton model enabled
advanced kinematic analysis, including accurate measurement of tail and
heading angles, and distance between the eyes over time. These refined and
higher order kinematic measures enabled automated and reproducible
seizure detection in several thousand PTZ-exposed larvae between 3 and 7
dpf. It is interesting to note that ML detection of behavioral seizure-like
patterns over time closely resemble temporal traces of abnormal brain
activity using a combination of electrophysiology and Ca2+ imaging (see
Figs. 6 and 7).

Complex PTZ evoked seizure behaviors are severe and follow a ste-
reotypical sequence from stationary to normal swim, to whirlpool swim-
ming, to convulsive behavior culminating in posture loss thatmay represent
a larval form of tonic-clonic convulsion22,29. This sequence is present in the
ML ethograms and resembles how this acute seizure model progresses
through Racine-like behavioral stages17,22. Application of this ML approach
also revealed complex behavioral movement patterns in a genetic model of
Dravet syndrome (scn1lab mutants) that were not fully appreciated in
publications using single-camera systems37,51,89,90. In scn1lab mutants,
spontaneous seizures characterized by prominent whirlpool, brief convul-
sion or loss of posture events in the ethogram occurred in a more random
pattern than that observed with PTZ. Interestingly, this pattern was not
observed in controls (WT AB or WT siblings) and may recapitulate the
spectrum of seizure types (atonic seizures, brief myoclonic seizures and

Fig. 3 | Increased swim speed with PTZ. a Speed plotted over time for one repre-
sentative larva at 5 dpf showing the difference in speeds during each recording epoch
with dotted lines indicating maximum speeds reached during each epoch.
b Probability density plots for maximum speeds (mm/s) reached by 3, 5 and 7 dpf
larvae showing an increase in max speeds during TP1 and TP2 from baseline.
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tonic-clonic convulsions) seen in this patient population91–94. Furthermore,
unbiased analysis of total activity across six different zebrafish DEEmodels
proved to be a sensitive measure of epilepsy phenotypes as two genetic
models (pnpo and scn1lab) previously shown to exhibit electrographic sei-
zure activitywere successfully distinguished,whilemodelswithmilderorno
reported electrographic activity showed no significant differences from
controls. Further, we found no evidence of a previously reported hyper-
excitability phenotype in pcdh19mutants95. These data suggest that higher-
resolution MCAM imaging capabilities coupled to novel metrics and
machine learning algorithmsmay offer sensitive and deeper computational
phenotyping of seizure-like behavior in zebrafish geneticmodels of epilepsy.

The acute PTZ model in zebrafish larvae serves as a reliable platform
for seizure analysis, consistently inducing prominent convulsive behaviors.
This made it ideal for training our innovative ML classifier, and enabled
development of higher-order kinematic metrics that advance automated
detection of the complex behavioral repertoire associated with seizures.

Importantly, by coupling high-resolution, fast-acquisition imaging with
ML,we establisheda scalable platform that is sensitive enough todetect both
chemically-induced and spontaneous seizure phenotypes. However, the
high-resolution acquisitions required to perform these analyses on a 96-well
plate are limited by computing power currently available. For example,
current hardware presents physical limitations related to the speed at which
central processing unit (CPU) process instructions, the amount of memory
available and the size of storage devices which together resulted in the
relatively brief 5-minute acquisition epochs used here. Since zebrafishmove
in three dimensions and images capture only two, the current system may
not fully represent the well space occupied by a seizing larva. None the less,
these tools establish a new standard for behavioral seizure studies in zeb-
rafish. Leveraging the strengths of zebrafish models for high-throughput
chemical screens38,96–99 and rapid functional evaluation of human
genomics49,100 our platform offers a scalable and powerful approach for
advancing large-scale zebrafish-based translational neuroscience research.

Fig. 4 | Tail and head angle with PTZ. a Larval schematic showing heading
(orange), tail (yellow) and body axis (blue) vectors used to calculate change in tail
angle indicated byӨ, measured between tail and body axis vectors. bRepresentative
images of zebrafish larvae displaying examples of different calculated tail angles.
c Schematic indicating how heading angle change is calculated. Larva in gray in the

previous frame is compared to larva in blue in the current frame and heading angle
difference is computed. dDistribution of tail angle measurements displayed at each
recording epoch for 3 (left,N = 50.4million), 5 (center,N = 71million) and 7 (right,
N = 71 million) dpf larvae showing PTZ induces greater tail angles at all ages.
e Distribution of heading angle changes with PTZ at all ages.
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Fig. 6 | Seizure activity reflected in inter-eye dis-
tance and brain activity. a Representative inter-eye
distance plotted over time for baseline and PTZ TP2
recordings (top) with a seizure event highlighted at
higher resolution (bottom). b Outline of a zebrafish
overlayed with an image of theHuC:H2B:GCaMP6s
reporter expression. Live microscope image of
photometry fiber placement with blue shading
overlaid to indicate casted light from the probe.
Placement of electrode is also shown for simulta-
neous LFP recording. c Representative baseline
recording showing Ca2+ trace recorded from probe
aligned with LFP showing similar activity. 15 mM
PTZ recordings from a larva showing Ca2+ trace
recorded from probe aligned with LFP showing
seizure-like activity in the probe aligningwith events
LFP. Scale bar represents 50 µm.

Fig. 5 | Inter-eye distance with PTZ. a Larval head
schematic denoting eye points used to calculate
inter-eye distances, d. b Representative frames from
recorded larvae showing examples of stationary and
posture loss positions. c Plots of average inter-eye
distance (mm) for each larva recorded at baseline
(blue), PTZ TP1 (yellow) and PTZTP2 (orange) at 3
dpf (left, N = 473), 5 dpf (center, N = 547) and 7 dpf
(right, N = 546). PTZ significantly decreased inter-
eye distance at 3 dpf (first TP) or 5 and 7 dpf (TP1
and TP2). Wilcoxon signed rank *p < 0.05,
****p < 0.0001.
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Methods
Zebrafish husbandry
We have complied with all relevant ethical regulations for animal use. All
procedures described herein were performed in accordance with the Guide
for the Care and Use of Animals (ebrary Inc., 2011) and adhered to
guidelines approved by University of California, San Francisco Institution
Animal Care and Use Committee (IACUC approval: #AN171512-03A).
Adult and juvenile zebrafish were maintained in a temperature-controlled
facility on a 14-h light and 10-h dark cycle (9:00 AM to 11:00 PM PST).
Juveniles (30–60 dpf) were fed twice daily, once with JBL powder (JBL
NovoTom Artema) and the other with JBL powder mixed with live brine
shrimp (Argent Aquaculture). Adults were also fed two times per day, first
with flake food (tropical flakes, Tetramin) and then with flake food mixed
with live brine shrimp. Zebrafish embryos and larvae were raised in an
incubator kept at 28 °C on the same light/dark cycle as the facility in embryo
medium consisting of 0.03% Instant Ocean (Aquariam Systems, Inc) in
reverse osmosis-distilled water. For PTZ behavioral experiments, all larvae
were wild type AB strain (WT), and experimental time points were 3, 5 and
7 dpf. For behavioral experiments in genetic models, larvae were wild type
sibling or homozygote mutants from F10 or later generation adult hetero-
zygote (gabrb3, pcdh19, pnpo, scn1lab (s552), scn8aa or syngap1b) crosses
and genotyped post hoc. Since zebrafish larvae do not undergo sexual dif-
ferentiation until 20-25 dpf, sex is not an impacting biological factor on any
result presented in this study.

Experimentaldesign,bodyorientationestimationandacquisition
Individual larvae were randomly selected and pipetted into wells of a 96-
well plate in 150 µL embryo media and placed in the multi-camera array
microscope (MCAMTM, Ramona Optics Inc., Durham, NC, USA) to
habituate for 20min. For PTZ experiments, WT larvae were used; for
genetic models (conspecific) WT siblings were used. The baseline period
was acquired for 5 min followed by the addition of 50 µL PTZ directly
into each well to reach a final concentration of 15mM. After a 5 min
incubation period, timepoint one (TP1) was acquired for 5 min followed
by a 5min wait period and acquisition of timepoint two (TP2) for 5 min.
Imaging parameters for each 5min recording epoch were set on a Linux
workstation running custom Ramona Optics MCAM software. Specifi-
cations included 2msec exposure, 2.0 digital gain, 1.25 analog gain,
infrared (850 nm) transmission illumination with 65% brightness, 160
frames per second acquisition, and sensor pixel binning mode 4 to
optimize frame rate to obtain a video of shape 256 × 256 pixels for each of
the 96 wells. The height of the sample platform was adjusted for optimal
focus of the larvae for each experiment using the MCAM interface for
visual guidance. Raw image data was stored in NetCDF format with all
relevant metadata.

Once all video data was acquired, they were compressed to MP4
format and tracked using algorithms built into custom Ramona Optics

MCAM software. Pose estimation machine learning models were ori-
ginally based on the DeepLabCut backbone84 and then optimized for
parallelized inference and MCAM compatibility. Models were trained
internally at Ramona Optics with a large amount of training data from
many diverse datasets and fine-tuned with one thousand frames from
datasets collected in this work specifically. The optimized body orien-
tation estimation model (version 20230825) was evaluated for accuracy
by comparing inferred key point locations to 1177 frames of manually
annotated ground truth zebrafish and all larvae in all video recordings
were tracked using this model (Supplementary Fig. 2). Tracking data
provided cartesian coordinates of eight key-points on each zebrafish
image, yielding 48,000 frames of data per recording epoch. Data acqui-
sition continued until a minimum of 3 independent breeding replicates
were performed for each age group and the following sample sizes were
reached as a result: 473 recorded larvae at 3 dpf, 547 recorded larvae at 5
dpf, and 546 recorded larvae 7 dpf, followed by an additional 768
recorded larvae treated with VPA at 5 dpf. The same approach was
followed for genetic mutant populations: n = 74, 101 (gabrb3, WT),
n = 89, 74 (pcdh19, WT), n = 79, 147 (pnpo, WT), n = 226, 97 (scn1lab,
WT), n = 62, 83 (scn8aa, WT), and n = 136, 45 (syngap1b, WT).

Fiber photometry and electrophysiology
5 dpf Tg(HUC:H2B-GCaMP6s) larvae were immobilized dorsal side up in
2% low melting point agarose (BP1260-100, Fisher Scientific). Recording
chambers were bathed in embryo media, placed on the stage of an upright
microscope (Olympus BX-51W) andmonitored continuously using a Zeiss
Axiocam digital camera. Under visual guidance, a 100 µmphotometry fiber
(RWD Life Science Co., LTD) was placed against the forebrain to capture
changes in Ca2+ signals prior to placing a single-glass microelectrode (WPI
glass #TW150 F-3) with approximately 1 µm tip diameter backfilled with
2mM NaCl internal solution in the optic tectum for gap-free local field
potential (LFP) recordings. Fiber photometry acquisition settings includeda
60 frames per second capture rate, the gain value set to 70 and light settings
set to 80% and 10% for 410 nm and 470 nm respectively. Fiber photometry
data was stored on a computer running Multichannel Fiber Photometry
Software (RWD Life Science Co,. LTD). LFP acquisition settings were
conducted as described previously described22,72 including low-pass filtering
at 1 kHz, high-pass filtering at 0.2 Hz and sampling at 10 kHz using a
Digidata 1320A/D interface (Molecular Devices). LFP data was stored on a
computer running AxoScope 10.3 software (Molecular Devices). Baseline
recordings were taken prior to bath application of 15mM PTZ (60min
exposure, N = 6 larvae).

Pharmacology
Pentylenetetrazole (PTZ) (Sigma Aldrich, CAS: 54-95-5) was dissolved in
embryo medium at a concentration of 60mM and was used to chemically
induce acute seizure activity at a final concentration of 15mM22.

Fig. 7 | Anti-epileptic effect of VPA.
a Representative dual LFP (black) and fiber photo-
metry Ca2+ (green) recordings showing 15 mMPTZ
induced seizure activity (above) followed by 5 mM
VPA treatment (below) showing seizure ablation.
b Representative tracking plots for PTZ and 5 mM
VPA treatments, respectively. c Plots for average
total activity (A.U., left) and total distance (m, right)
of each larva (N = 768) with PTZ (green) and 5 mM
VPA treatment (green). Wilcoxon signed rank
****p < 0.0001.
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Fig. 8 | Automated behavior classification with random forest classifier.
a Schematic outlining process for egocentric alignment transformations and
translations for 60 frame windows. b Random Forest Classifier (RFC) model and
confusionmatrix showing performance of the optimizedmodel. c Sample pie charts
depicting percentage of each behavior performed for 8 individual larvae at each
recording epoch. Baseline (navy box), TP1 (yellow box), TP2 (orange box).
Represented behaviors include stationary (indigo), normal swim (teal), whirlpool

(orange), convulsion (red) and posture loss (purple). d Ethogram plot (top) over the
entire duration of each recording epoch for one representative larva from well B2
(circled in panel (e), TP2, scalar measurements plotted that align with ethogram
showing how various behaviors appear when represented as larval displacement
(mm), inter-eye distance (mm), change in heading angle (deg), or tail angle (deg)
over time (bottom).
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Activity metric data processing
The total activity metric (Ai) was computed for each fish by summing the
change in pixels between sequential frames of an acquired video according
to Eq. (1). In this equation Pi(x,y) is the pixel value of frame i, Pi+1(x,y) is the
pixel value of frame i+ 1, T is a relative threshold set to 0.1, D is an absolute
threshold set to 20, m is the frame height, and n is the frame width. This
endpoint was used to determine gross movement. Larvae with total activity
metric scores below 20,000 pixels during TP2 were automatically excluded
from pose estimation analysis as this activity threshold was established for
larvae that did not survive PTZ treatment.

Ai ¼
Xn
x¼1

Xm
y¼1

2 � Pi x; y
� �� Pi�1 x; y

� ��� ��
Pi x; y
� �þ Pi�1 x; y

� � >T

" #\
Pi x; y
� ����

�Pi�1 x; y
� ��� >D�

ð1Þ

Data cleaning
All scalar data, including both x and y coordinates for each of the 8 key-
points on the zebrafish larvae, was filtered and smoothed according to the
following procedure prior to data analysis. Larval speeds captured in this
dataset, reaching 143 million data points, were plotted as a histogram to
establish a biologically relevant speed threshold of 120mm/sec and verified
further by eye. Frames where larvae were moving faster than this threshold
were considered anomalies and the erroneous frames were excluded from
the tracking data. Frames were also removed if the center key-point of the
larvae jumped outside the boundary of the circular well or if any key-point
was found to be over 0.7x the larval length away from the center of mass
(COM) of the larva. COM for each larva was calculated from 6 points along
the skeleton midline as the 2 eye key-points biased the COM to the front.
Data was then smoothed using a wavelet denoising filter (Daubechies 1990)
implemented with Scikit Image (scikit-image 0.21) and the sym4 wavelet
(scikitlearn1.2)101,102 seeEq. (2). Sigmavalues forusewith thedenoisingfilter
were computed as the average sigma for each feature of each well plate
acquisition. Once data was denoised, the following scalar metrics were
analyzed: total distance traveled, instantaneous speed, changes in tail and

heading angles, and inter-eye distance.

CWTψ f a; bð Þ ¼ Wf b; að Þ ¼ aj j�1
2

Z 1

�1
f tð Þψ� t � b

a

� �
dt ð2Þ

Machine learning model training
Video frameswere organized into overlapping vectorwindows of 60 frames,
corresponding to 0.375 s per window53. The 60 frame vector windows were
extracted as video clips and annotated as one of five behavior classes: sta-
tionary, normal swim, whirlpool, convulsion and posture loss. A dataset of
4418 clips were labeled and for each behavior class 90% were randomly
selected as the training set and 10% as the test set. To balance the repre-
sentation of each behavior class in the test set for model evaluation,
409 samples were selected from each class’s test set. 409 was the number of
samples chosen as this was the number of prelabeled samples available for
the behavior class that occurred the least. Any remaining test sets from the
other class’s were added back to the training set.

Egocentric alignment transformations of estimated poses were com-
puted for the first frame of each window, which rotates the fish within the
well to a vertical (head up) position followed by a translation that shifts all
key-points to the center of each image. This series of transformations were
applied to the remaining 59 frames in each vector. Each aligned feature
vector of shape 60 × 8 × 2 (frames x key-points x coordinates) was flattened
to a feature vector of length 960 for further use.

Feature vectors corresponding to video clips were normalized by
subtracting the mean value and dividing by the maximum value of each
feature. Principal component analysis (PCA) was used to reduce dimen-
sionality (https://sciwheel.com/work/bibliography/16334125) (scikit-learn
1.3.2), retaining components describing 95% of the dataset variance. Nor-
malization and PCA were computed using only the training set, then the
same transformations were applied to the test set to ensure that the esti-
mated accuracy of the algorithm was not contaminated. The normalized
and aligned vectors of key point data were input to the model, which was
trained to fit the data space. These feature vectors inherently capture the

Fig. 9 | Automated MCAM analysis on genetic
epilepsy models. a Total activity dot-plots are
shown for six CRISPR-generated zebrafish congenic
WT siblings and age-matched homozygote mutant
lines: gabrb3 (101 WT, 74 mutant); pcdh19 (74 WT,
89 mutant); pnpo (94 WT, 184 mutant; unpaired
t-test ****p < 0.0001); scn8aa (79 WT, 60 mutant);
scn1lab (84 WT, 137 mutant; unpaired t-test
****p < 0.0001); syngap1b (45 WT, 133 mutant).
b Ethogram plot for a representative scn1lab
homozygote mutant zebrafish. The entire duration
of the 5 min recording epoch for one representative
larva is shown (top). Pie chart depicting percentage
of each behavior performed at each recording epoch
(bottom, left). Color coding as in Fig. 8. Scalar
measurements plotted that align with ethogram
showing various seizure-like behaviors (bot-
tom, right).
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behavioral kinematics we computed, eliminating the need to input them as
separate features.

Three different algorithms were evaluated for behavioral prediction of
video clips (scikit-learn 1.3.2): k-nearest neighbors103, random forest104, and
support vector classifiers105. All models were trained for one thousand
iterations. Precision, recall and F-score were averaged across all classes and
were used as evaluationmetrics106 for comparison according to Eqs. (3) and
(4), where TP is the True Positive rate, FP is the False Positive rate and FN is
the FalseNegative rate. Confusionmatrices were generated for visualization
of model accuracy and F1 score was evaluated for each model according to
Eq. (5), where Mij is the confusion matrix element at index i, j and n is the
number of classes and thus dimension of the confusionmatrix. The random
forest algorithm was chosen for further optimization and trained, allowing
dataset shuffling between training iterations, resulting in tens of thousands
of differentmodels being trained. The best performing random forestmodel
was selected for final use in Fig. 8.

Precision ¼ TP
TP þ FP

ð3Þ

Recall ¼ TP
TP þ FN

ð4Þ

F1 ¼
P

i MiiPn
i¼1 Mii þ 1

2

Pn
i¼1

Pn
j¼1; i≠j Mij

	 

þ Pn

i¼1

Pn
j¼1; i≠j Mji

	 
h i

ð5Þ

All pose estimation tracking data was organized using the same win-
dowing and egocentric alignment described above. The random forest
model was used to predict behavioral states for individual larvae and results
were visualized by generating ethograms and aligning them with scalar
metric tracking results. For simplistic behavioral comparisons across larvae,
pie charts demonstrating the calculated fraction of time spent for each
behavior during a recording epoch were generated for each larva.

Statistics and reproducibility
Statistical analysis was conducted using GraphPad Prism 10.0.2 soft-
ware. Data distributions were assessed for normality using both the
Shapiro–Wilk and Kolmogorov–Smirnov tests. Both tests indicated
that all PTZ and VPA data were not normally distributed, therefore,
non-parametric statistical testing was applied. Specifically, the Wil-
coxon matched-pairs signed-rank test was used to determine whether
population mean ranks differed. Data from the genetic mutant
models were normally distributed and an unpaired t-test was used to
determine significance. An alpha level of 0.05 was used for all
comparisons and all p-values were two-tailed. Statistical significance
was defined as p < 0.05, unless otherwise noted. Final sample sizes
after outlier removal were n = 473 (3 dpf), n = 547 (5 dpf), and
n = 546 (7 dpf).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Examples of rawdata collectedwith this project in addition to video samples
of various larval behavioral seizure activities are available in three data
repositories which can be found at: https://zenodo.org/records/15352042107,
10624845108, 10625177109, or 10565088110. The complete data has been
retained locally and can be provided upon reasonable request.

Code availability
Code related to data cleaning and calculating distances, heading and tail
angles, as well as inter-eye distances are written in python and are available

in a Git repository. Supervised machine learning algorithms, along with
ethogram generation, are also located in the repository which can be found
at: https://gitlab.com/ramona-applications/seizure_behavior_analysis.
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